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A 4(n+I)-DIMENSIONAL MODEL REFERENCE ADAPTIVE
CONTROL FOR THE STABILIZATION OF ANY STRICTLY

PROPER MINIMUM PHASE LINEAR SYSTEMS WITH RELATIVE
DEGREE NOT EXCEEDING TWO AND DIMENSION NOT EXCEEDING n D

Department of Electrical Engineering'
Yale University

New Haven, Connecticut
U.S.A. U

INTRODUCTION .

In a recent paper [] it was shown that there are smooth, nonlinear, three-
dimensional controllers, not incorporating probing signals, which are capable of
adaptively stabilizing any single-input, single-output, minimum phase, relative
degree two or less linear system of any dimension. Controllers of this type are
based on minimal dynamic compensator synthesis [2]. While such controllers are
simple in structure they do not have a model-following capability.

In this paper we develop a new algorithm based on observer theory f21, which can
adaptively stabilize and achieve model-following as well. The controller, which
is a smooth nonlinear dynamical system of dimension 4(n+1), can adaptively sta-
bilize any physical process with scalar input u and scalar output y , provided
the process can be modelled by a strictly-proper, minimum phase, linear system of
dimension not exceeding n and relative degree not exceeding two. The controller
is based on concepts developed previously in [I] and [3]. .

1. CONTROL EQUATIONS

The controller to be examined consists of a two-dimensional reference system

Yr ll r- -'
+ p= r (1)

2i2
where X and A are positive const and and r() is a bounded, differentiable

reference input, a tracking error

e y -Y (2)

sensitivity function n-vectors 6 and 8 generated by the equationsy

- A6 + buu u (3)

- A8 + by
y y

where n is a prespecified positive integer and (A,b) is any n-dimensional control-
lable pair with A stable, and a control law

u - N(IjkjI)(k'8 + kle + k p + k r)()
uu y y P r

where kuk ,k and k are control parameters,
uy r

k " [ku,k,k,k r] , (5)

i1kj11 (k'k) , and N(.) is a Nussbaum Gain, i.e. any integrable function satisfying

-5 12 30 018ii):..:..- .-. .. .. .... .. -. .- -. .;... -...-.... ........ ... -.."
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sup 4- J N(v)did -l

(6)

inf {1 vN(6Odp) .

{e.g., N(P)PCos 2) Control parameters k ,k ,k and k are adjusted
according to the rules yrP

k 8e + z A A - (A + bu)e

6u U U 1lu U

k 6 e + z z x 10ye - (A6 + by)e
y y y Y y (7)

kP pe + z zP A Pe - (r - p)e

k re+z xire -re
r r r 1. .

The controller defined by (1)-(7) may be viewed as a smooth 4(n+l)-dimensional
dynamical system with inputs r, r and y, state {yrpe ,ZZzpZrz and output.

Remarks:

1. By using minimal dimensional observer theory, it is possible to reduce the
dimensions of 0 and 0 to (n-i) and to eliminate one control parameter thereby

u y
obtaining a (4n+l)-dimensional algorithm with the same capabilities as the one
described here [2]. The stability analysis of the lower-dimensional algorithm
is essentially the same as the analysis which follows.

2. There are two different ways to avoid generating the derivative of the refer-
ence signal r required by the above algorithm. The first is simply to intro-
duce a new reference signal r and then make r a state of a three-dimension-
al reference system defined by (1) and ; + A3 r - r where A3 > 0. The second

is to make use of an idea due to Monopoli (4,5] which amounts to replacing (4)
and (7) by

u N(klI)lk'6 + + aN(lkll) N(fJ kJJ)O')e
211iU. 1lk 11

and
O e

INSPECIE"

respectively where 3

0- [0'.,'.,pr]' (8)

and 4 + A2 - 0. This alternative, however, requires N(-) to be differentiable.)r2I

2. MAIN RESULT

The process to which the preceding algorithm is applicable must admit a minimum !d 0
phase, linear model of dimension 4 n and relative degree 4 2. It is known (6] .........
that these assumptions imply that such a process can also be modelled by a n-

dimensional, stabilizable, minimum phase, relative degree two or one linear system
of the form

x = (A + h c)x +bu .. Codes
pp p p (9) blt oeliCodes

y - cx Aj aridfor
Special
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where c is any row vector chosen so that (c,A) is observable, and k and b areP P

unknown constant, parameter vectors. We take (9) as the model of the process to
be controlled. Our main result is as follows.

Theorem 1: For each initial state and each differentiable input r, bounded on
T-0-), the state response X - (x O 6 ,py ,Z z ,z ,z ) of the closed-loop system

P y ru y r
defined by (l)-(9) exists and is bounded on [0,-) and the tracking error e - 0 as
t--

The remainder of this paper is devoted to a proof of this theorem.

3. STABILITY ANALYSIS

To prove Theorem 1, it proves useful to work with a certain system of equations
which we now derive. For this let n* denote the relative degree of (9) and

define

6- + Xly (10)

It is known [6] that for n* 1,11

6 - gu - d '6 - d'0 + c (1)"
U u yy

where g is a nonzero constant - the "high-frequency gain" - d and d are unknown
u y

parameter vectors, and e is an unknown linear combination of decaying exponentials.
Similarly, for n* - 2 it is known that

6+A,6" gu-d 1 -d'8 +e (12)2 uu y y

. where g, du,d and e have the same interpretations as for n* - 1. It is also -'
uy

known (6] in either case that if x = [eu,8',X' l i, then x satisfies
uy

x Ax + b(gu -d' - d'6 + c) (13)

where A is stable.

To proceed, define

a - e + Xle (14)

and note froM (1), (2) and (10) that a - 6 - p. It follows from (1), (11) and (12)
that

o gu -d' - d' + c - p
u u y y

if n* I and

+ X a gu - d'1 - d'O + - r2 uu yy

if n* - 2. Thus if we define d = [d',d',1,0]' for n* 1 or d = [d ,d 0,1,]' for
I- n* -2, then u-...,-

u igu - d' + c if n* 1 (15) J1,
-" andand + A o-gu - d'8 + c if n* 2 (16)

2
where 8 was defined previously in (8). If in addition we define q = (1,0]' for
n* - 1 or q [0,1]' for n* = 2, then for n* - 1 or 2 (13) becomes

x Ax + b(gu - d'8 + c + (p,r]q) (17)

" ~ ~ ~ ~ ~ *..--"--' -:
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Thus with the notation

u - gu - d'6 + c,

(15) through (17) can be rewritten as N

a a u if n* I (15)'

a+Xo -u if n*-2 (16)1

- A + b(u + [pr]'q) (17)'

By differentiating the expressions for kukyk and k in (7) and substituting in
* y P r

the expressions for ,u zzy r also in (7), it is straightforward to verify that .a

a-Ok 8 a, k p oand k -ro, o being given by (14). Using (5) and
u y y r
(8) we can thus write

k ou (18)

For ease of reference we now sumarize in one place, the system of equations to be

analyzed.

e+ Xe - (19a)

a I u if n* - 1 (19b)

a+ Xau if n* -2 (19c)2.

g(i- -)k1- d'6 + e (19d)

I - o (19e)

x - Ax + ;(u + [pr]'q) (19f)

+ A2 p - r (19g)

8 - [6',6',p,r]' (19h)

X- uy 0ofX1 (19i)

u yp

The preceeding defines a dynamical system of the form Z F(Zr,c) where

Z o [eok,x,P] (with G deleted from Z if n* - 1). Observe that boundedness of Z
implies boundedness of e,o,k,u,8xp and p. Boundedness of p together with (1)

uyp
implies boundedness of yr* In addition, boundedness of e~k,O . ,p and r together

y
with (5) and (7) imply boundedness of zuZysz and z Thus to prove Theorem I

it is enough to show that Z(t) exists and is bounded on [0,-) and that e(t) * 0 as . -

Differentiability of F implies that for any initial state Z(O), there must exist
an interval I - Ot 1 ) on which a solution Z(t) exists. For any function &(t)
defined on 1, we write E c C(l) if --lc. tis boundudu on I by a constant not

depending on t we also write C c L (I) if J ( j dT L (I).

...... --..- - ---- 'a . -. .,
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We can now state

Proposition 1: There exist constants C, and C not depending on tl, such that for

ot 
Xhre (T)u(T)dT~ gi(k()I[ + X 0Jta2 TdT + ClIlk(t)l + C2  (20)

wher

i f) " uN(v)dp 
(21)

Proof: Set n -Ilk 112; hence from (19e), i - 2k'0a. It follows from this, (19d)
an-d(19e) that "

- * N(n ) - d'k + oc (22)
2

We can now develop bounds for the integrals of the terms on the 
right side of (22).

First note that n(t)

g/2 N ( ))n(r)di = g/2 f N(n )dn
0 n(O)--

Ilk t)Il---'
- g wN(w)dw (23)o~~~l (23),---"

Next observe that - gr(jjk(t)j) - ga(tjk(O) l)

-Jd'k()dt d'k() -d'k(t)

. Ijdjj Ik(t) 11 + d'k(O)l (24)

2 2- °For any positive constant C, o E *Co + E 24C. Thus

0()C(T)dT 2< C J 2((dd + C0 0 0 - (c ' 2 )".-.,

By setting C - A 2/(l+A2), C, -Ildlland
c2

(23)-(25) can be combined to yield (20). V

Proof of Theorem 1: From (19b) and (19c) it follows that J(T)U(T)dT equals
f2 t2 2""2a (T)dT if n* - 1 or X J oT)di + )(a,() a (0)) it n* 2. This andJo 2 Jho()-o() tn

Proposition 1 thus imply that

2 t 2 (1 2 if n* =

Q(llk(t)II) j rdrn(26)

'21r fL ()d a2 if n- 2 5
where

l(O) gv(O) + C 1, + C2 + a2(0)/2

In view of (6) and the definition of n() in (21) it is easy to see that there must
exist a closed-bounded interval (a,bj containing Ilk(o)II for which both :,(a) and

. .. . .;



'. -.- ,

are negative. Since (26) implies that for any t E I, Q(jjk(t)II) 0,11kt)ll
cannot pass through either a or b.. Thereforellkll 2 L'(I). In addition, since
S(I) is continuous, it follows from (26) that a £ L (I) for n* - 1 and

2 (I AL (I) for n* - 2. Thus a L2(1) for n* = 1,2 so by (19a)

SE L2 (IiL (1) for n* 1,2.

For n* - , u - L (); since [p,r]' e L_(I) it follows from (19f) that

For n* - 2, u + X2a and a LC(I); again it follows from (19f) that

x e L (1).

At this point we have shown that Z - [e,o,k,x,p]' E L (I) for n* - 2, that

Z - [e,k,x,Pl' £ Lm(I) for n* - I and that e c L2[I] fgr n* = 1,2. Therefore we
can take tI  . Thus Z is bounded on [0,-) and e £ L [0,..). In addition, since

(19) implies that e c Lw(O,), it follows that e -t 0 as t - . V

CONCLUDING REMARKS

The algorithm presented here and its subsequent stability analysis rely for the
most part on ideas developed previously in [1], [3] and [6]. In fact the stability
analysis given is almost identical to that used in [1]. The essential new idea in
this paper is to use a control law (4) incorporating both reference model state p
and reference input r. It is this departure from more traditional adaptive control
laws, (e.g. [3]) which makes model following possible with one algorithm for
processes of both relative degree 1 and 2.
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